This file shows an example of a spreadsheet used to find the "best" fit of a function to a set of data. The example used is the function:

$$f(X) = a \exp(b X)$$

The definition of best in this case is the function which gives the minimum sum of the squares of the errors of the function compared to the data (the infamous Least Squares fit). The data is shown in the two columns marked "X" and "Y". The function result is shown in the column "f(X)". "Error" is f(X)-Y. "Sq. Error" is the square of Error. "a" and "b" are the coefficients of the equation f(X) which are manipulated to find the minimum sum of the squares of the errors, "SSE". For interest, the average, maximum and minimum errors are also shown.

This technique is best used when no existing dedicated program exists to fit the function you are interested. For linear functions or polynomials, good tools already exist to find the best fit. It is only when unusual functions are required, complicated non-linear functions, that this technique is preferable. This technique is best used for functions which are difficult or time consuming to compute by hand, and which are seldom used. It allows a general method which is adaptable to many forms of functions to be available without the time and effort of writing a dedicated program. It is slower than a dedicated program, so if speed of execution is an important factor, you should consider writing a Fortran or Basic program to do your curve fit.

1 2 3	A X	B Y	C f(X)= a*exp(b*X)		E Sq.Error	F	G H a= 1.21 b= 2.4 SSE= .9719085
4	0	.9444343	1.21	.2655657	.0705251		av. err0159869
5	.1	1.579790	1.538211	041578	.0017288		max err5482521
6	.2	1.725657	1.955450	.2297928	.0528047		min err426827
7		2.761317			.0758743		
8		3.133697	3.160153	.0264562	.0006999		
9		3.941739	4.017341	.0756024	.0057157		This example shows
10		4.764679		.3423631	.1172125		how to curve fit
11	.7	0.010100		426827	.1821812		an arbitrary fcn
12	.8			.0079019	.0000624		to a set of data
13	.9		10.49208	.5482521	.3005803		by using a spread-
14	1	13.53522	13.33804	197180	.0388801		sheet to minimize
15	1.1	17.24235	16.95598	286374	.0820103		the sum of the
16	1.2	21.69043	21.55527	135158	.0182678		square of the
17	1.3	27.33829	27.40212	.0638252	.0040737		errors (SSE).
18	1.4	34.87685	34.83492	041931	.0017582		Manipulate a and b
19	1.5	44.14578	44.28386	.1380878	.0190682		in cells H1 and H2
20	1.6	56.31739	56.29582	021567	.0004652		for your answer.